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Abstract

This article is about community detection algorithms in graphs. First a
new method will be introduced, which is based on an extension [16] of the
commonly used modularity [17, 18, 19, 20] and gives overlapping communi-
ties. We list and compare the results given by our new method and some
other algorithms yileding either overlapping or non-overlapping communities.
While the main use of the proposed algorithm is benchmarking, we also con-
sider the possibility of hot starts, and some further extensions that considers
the degree distribution of the graphs.
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1 Motivation

Graph mining has became an important field of data mining, especially the com-
munity detection is very popular, because it can be applied in sociology, computer
science, biology or finance.

The main problem in community detection is that there is no exact definition for
communities; all we can do is to postulate some properties. One approach is that a
community is a set of vertices that are relatively densely connected to each other,
but sparsely connected to other dense groups in the graph. Several methods are
proposed for community detection. The majority of those define non-overlapping
communities (clusters, partitions) [24, 13, 2], some of them define overlapping sets
(henceforward communities), see [1, 22, 11].

However, it became clear that overlapping communities must be also considered
in Small World graphs, see [10, 12, 22, 16]. Moreover, the given algorithms turned
out to be useful in data mining and modeling [8, 9]. In fact, one way to evaluate the
performance of different algorithms is to check their predictive value in models [11].
Another possibility is to define plausible measures. The most successful of those
is the Newman modularity that is defined for a clustering of a graph. The higher
the modularity, the better the clustering [17]. Nevertheless, for large graphs the
modularity is just approximated [7, 5], since it is an NP-hard problem to maximize
modularity [6].
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Népusz et al. [16] proposed an algorithm for the detection of overlapping com-
munities in quadratic programming terms. To measure their results they also ex-
tended the notion of modularity to overlapping communities. We continue their
work, but change the objective function, and examine the possibility of directly
optimizing the extended modularity. Of course, one cannot expect an effective al-
gorithm for this, since it is also a quadratic optimization problem. Still, it can be
computed for small graphs, and provides good benchmarks for the community de-
tection heuristics. It is also instructive, how good approximation of the modularity
is achieved by those heuristics?

Other methods for extending modularity exist. Nicosia et al. [21] introduce a
general extension of the modularity on directed graphs which moves from simple
considerations about the meaning and structure of the original modularity function,
using an enriched null–model.

2 Definitions

A graph G with vertex set V and edge set E will be denoted G = (V,E), the
cardinality of the vertex set will be denoted n, and the cardinality of the edge set
will be denoted m. In this paper every graph is undirected and unweighted. The
objective of classical community detection in networks is to partition the vertex set
of the graph into c distinct subsets in a way that puts densely connected groups
of vertices in the same community. Here c can either be given in advance or
determined by the community detection algorithm itself. If c is known, a convenient
representation of a given partition is the partition matrix U = [uik]. U has n = |V |
rows and c columns, and uik = 1 if and only if vertex i belongs to the kth subset
in the partition, otherwise it is zero [3]. From the definition of the partition, it
follows that

∑c
k=1 uik = 1 for all 1 ≤ i ≤ n. The size of community k can then

be calculated as
∑n

i=1 uik, and for any meaningful partition, we can assume that
0 <

∑n
i=1 uik < n . These partitions are called hard or crisp partitions, because

a vertex can belong to one and only one of the detected communities [3]. The
generalization of the hard partition follows by allowing uik to attain any real value
from the interval [0, 1]. The constraints imposed on the partition matrix remain
the same:

uik ∈ [0, 1] , ∀1 ≤ i ≤ n, 1 ≤ k ≤ c; (1)
c∑

k=1

uik = 1, ∀1 ≤ i ≤ n; (2)

0 <
n∑

i=1

uik < n, ∀1 ≤ k ≤ c. (3)

Equation 2 simply states that the total membership degree for each vertex must be
equal to one. Informally, this means that vertices have a total membership degree
of one, which will be distributed among the communities. Inequality 3 is the formal



Community Detection by using the Extended Modularity 3

description of a simple requirement: we are not interested in empty communities
(to which no vertex belongs to any extent), and we do not want all vertices to be
grouped into a single community. Partitions of this type are called fuzzy partitions.

Several methods have been developed to search fuzzy clusters (see e.g. [4]), but
we can not apply these to graph partitioning, because these methods need some
additional data.

In [16] Népusz et al. use a different approach using vertex similarities. They
observe that a meaningful partition should group vertices that are somehow similar
to each other in the same community and assume that a similarity function s(U, i, j)
satisfies the following criteria:

• s(U, i, j) ∈ [0, 1]

• s(U, i, j) is continuous and differentiable for all uij

• s(U, i, j) = 1 if the membership values of vertex i and j suggest that these
are as similar as possible

• s(U, i, j) = 0 if the membership values of vertex i and j suggest that these
are completely dissimilar.

From now on, we denote s(U, i, j) by sij . We use the similarity matrix from
[16], that is

sij =
c∑

k=1

uikujk. (4)

In [16] the following objective function was optimized

DG(U) =
n∑

i=1

n∑
j=1

wij(s̃ij − sij)2, (5)

where wij ’s are optional weights and s̃ij is a prior assumption of the actual simi-
larity of the vertices. Instead of using Equation 5, we extend the commonly used
modularity [17, 18, 19, 20], and optimize this objective function directly over the
space of feasible solutions.

Modularity is a property of a network and a specific proposed division of that
network into communities. The measure of a division is large, if most of the edges
are within clusters and only a few are between those.

Let A be the adjacency matrix of the network, ki the degree of vertex i, δ(ci, cj)
is the Kronecker delta and suppose that vertex i belongs to community ci. Then

Q =
1

2m

∑
i,j

[
Aij −

kikj

2m

]
δ(ci, cj)

is the modularity of the given division.
The modularity can be either positive or negative. Positive values indicate the

possible presence of community structure. Thus one can search for community
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structure precisely by looking for the divisions of a network that have positive, and
preferably large values of the modularity.

By replacing δ(ci, cj) with sij we get a quadratic function called extended
(fuzzy) modularity [16]:

Q′ =
1

2m

∑
i,j

[
Aij −

kikj

2m

]
δ(ci, cj) =

1
2m

∑
i,j

[
Aij −

kikj

2m

]
sij (6)

=
1

2m

∑
i,j

[
Aij −

kikj

2m

]
〈ui, uj〉, (7)

where ui is the ith row in the fuzzy partition matrix U and 〈., .〉 denotes the
dot product.

So our the problem is to

maximize Q′

subject to uik ∈ [0, 1] , ∀1 ≤ i ≤ n, 1 ≤ k ≤ c;∑c
k=1 uik = 1, ∀1 ≤ i ≤ n;

0 <
∑n

i=1 uik < n, ∀1 ≤ k ≤ c.

Higher modularity usually means better division, so our aim was to maximize the
extended modularity directly, and thereby gaining a benchmark compare the results
given by other methods.

3 Examined methods

This section introduces the compared methods. The results of these methods were
not just compared in a sense of modularity value, but the detected communities
were given to the quadratic solver as an initial point, thus we used their results as
a “hot starts.”

In the case of overlapping communities, it is not obvious how to choose the
community membership vectors. We decided to use uniform distribution, e.g. if
the CPM (or N++) method produces 4 communities and the community 1 and 2
also contains vertex v, then the membership vector of v is (0.5, 0.5, 0, 0).

Table 1 shows the running time of the examined methods depending on the
number of nodes n, the number of edges m and the average degree davg.

3.1 Community detection based on edge betweenness

The method of Girvan and Newman [18] is based on the definition of edge between-
ness. The edge betweenness of an edge is the number of shortest paths between pairs
of vertices run along it. Iteratively removing the edges with highest betweenness,
we can determine a hierarchical tree and then communities.
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3.2 Leading eigenvector method

Newman showed in [19] that the modularity can be expressed in terms of the eigen-
vectors of a characteristic matrix for the network, which he calls the modularity
matrix, and that this expression leads to a spectral algorithm for community detec-
tion that returns better results in shorter running times than competing methods,
e.g. edge betweenness.

3.3 Greedy modularity optimization method

Clauset, Newman and Moore presented a hierarchical agglomeration algorithm for
detecting community structure [20]. This algorithm uses a greedy optimization in
which, starting with each vertex being the sole member of a community of one,
repeatedly join together the two communities whose amalgamation produces the
largest increase in the modularity Q.

3.4 Label propagation

The label propagation method [25] is based on the following iteration. Suppose that
a node x has neighbors and each neighbor carries a label denoting the community
to which they belong to. Then x determines its community based on the labels
of its neighbors. We assume that each node in the network chooses to join the
community to which the maximum number of its neighbors belong to, such that
the occurring ties are broken uniformly randomly.

At the beginning every vertex gets a unique label. Iteratively at every step, each
node updates its label based on the labels of its neighbors. The iterative process
continues until no node in the network changes its label.1

3.5 Walktrap

The walktrap method uses the idea of Markov chains, and it is based on random
walks to tell a distance for every pair of vertices in the graph and with this it
generalizes the distance of clusters [23].

3.6 Clique percolation

The clique percolation method (CPM) uses adjacent cliques to determine over-
lapping communities [12, 22]. It builds up the communities from k-clique (fully
connected graphs), and two k-cliques are considered adjacent if they share k − 1
nodes. Then communities are the unions of the adjacent k-cliques. Note that the
result heavily depends on the value of the parameter k.

1The algorithm may give oscillation if the input is a bipartite graph; this case should be
handled.
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3.7 N++ method

The
N++(v) = N+(N+(v)) = {u ∈ V | d(u, v) ≤ 2}

is the set of vertices which are “close” to v. Using these sets and their dense subsets,
the method provides overlapping communities [10, 11].

Table 1 shows the running time, where n is the number of vertices, m is the
number of edges in the graph.

Method Running time
worst case

Edge betweenness O(m2n) [18]
Leading eigenvector O(m+ n2 · steps) [19]
Newman greedy O(mdavg log n) [20]
Label propagation O(m+ n) [25]
Walktrap O(mn2) [23]

CPM O(exp(n)) [12]
N++ O(exp(n)) [10]

Table 1: Running time of the compared methods

3.8 Sequential greedy method

We also proposed a new sequential greedy (SG) method that might be considered
as a heuristic for the modularity optimization problem. We determined the number
of the communities (c) as the size of a maximal independent set I and placed those
into different clusters. (The membership vector of the kth vertex of I is ek, the the
kth element of the standard orthonormal base.) Then we greedily decide about the
membership vector of the leftover vertices using a partial modularity based on the
already placed vertices. Since the extended modularity Q′ (see Equation 7)

Q′ =
1

2m

∑
i,j

[
Aij −

kikj

2m

]
〈ui, uj〉,

in step j we set uj such that it maximizes the partial modularity function Qj , where

Qj = Q(uj) =
1

2m

∑
i<j

[
Aij −

kikj

2m

]
〈ui, uj〉 =

1
2m

〈∑
i<j

[
Aij −

kikj

2m

]
ui, uj

〉
,

and uj satisfies the constraints 2, 3. Obviously the function Q(uj) reaches its
maximum if uj equals the kth element of the standard orthonormal base, where k
is the position of the largest coordinate of the vector

∑
i<j

[
Aij − kikj

2m

]
ui.
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4 Technical background

This section describes the main software tools which were used during the research.

4.1 igraph library

The igraph [29] is a free software package for creating and manipulating undirected
and directed graphs. It includes implementations for classic graph theory problems
like minimum spanning trees and network flow, and also implements algorithms for
some recent network analysis methods, such as the community structure search.

The igraph contains functions for generating regular and random graphs, ma-
nipulating graphs, assigning attributes to vertices and edges. It can calculate va-
rious structural properties, graph isomorphism, includes heuristics for community
structure detection and supports many file formats.

We used the igraph functions IC_edge_betweenness, IC_leading_eigenvector,
IC_fastgreedy, IC_spinglass and the IC_walktrap functions (where IC equals to
igraph_community) to determine the corresponding community structure and the
function igraph_modularity to determine the modularity value of the clustering.

4.2 octave

GNU Octave is a high-level language, primarily intended for numerical computa-
tions which is mostly compatible with Matlab. We used the octave function sqp to
optimize the objective function which is an implementation of the SQP.

The sequential quadratic programming (SQP) is one of the most popular and
robust algorithms for nonlinear continuous optimization. The method is based on
solving a series of sub-problems designed to minimize a quadratic model of the
objective subject to a linearization of the constraints.

4.3 Visualize graphs

Several methods exist for visualizing graphs, we used the igraph_layout_graphopt
function, which optimizes vertex layout via the graphopt algorithm.

In contrast to other graph optimizers, graphopt does not use a finite-pass ap-
proach to layout optimization. Instead, it uses basic principles of physics to itera-
tively determine an optimal layout.

Each node is given a mass and an electric charge, and each edge is represented
as a spring. The node mass, the electric charge, the optimal spring length, and the
spring constant are tweakable in the gui in real time [30].

4.4 Communities

We used CFinder for CPM and the implementation of the N++ method is due to
Csizmadia [1, 10]. We would like to express our thanks for obtaining free access to
the appropriate softwares.
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Figure 1: Zachary graph – The instructor and the administrator are represented
by nodes 0 and 33. White squares represent individuals who ended up aligning
with the club’s instructor after the split, shaded circles those who aligned with the
administrator
.

5 Results

Newman has released his benchmark graphs in [28]. We have chosen the following
graphs from his database to examine:

Zachary’s karate club: social network of friendships between 34 members of a
karate club at a US university in the 1970s.

Les Miserables: co appearance network of characters in the novel Les Miserables.

Books about US politics: A network of books about US politics published around
the time of the 2004 presidential election and sold by the on-line bookseller
Amazon.com.

Several researchers worked with these graphs, e.g. [17, 18, 19, 20, 21] from the
perspective of community structure.

5.1 Zachary’s karate club network

The first example is taken from one of the classic studies in social network analysis.
In the late 1970s Wayne Zachary observed social interactions between the members
of a karate club at an American university [27]. The club split in two as a result of
an internal dispute, see Figure 1.

The critical node of the graph is the node 2, which (in real life) stayed with
the node 0 (he was the instructor). It is critical, since many clustering methods
fail to find the correct community it belongs to. Maximizing extended optimality
performs well: in every case (from c = 2 to c = 6) node 2 was assigned correctly.
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Figure 2: Zachary graph – The communities determined by the optimal extended
modularity. Different shapes denote different community. (a) c = 3 (b) c = 4

We tried a number of communities from c = 2 to c = 6. In these cases the
optimal extended modularity determines a strict partition, except in the case c = 5.
The nodes 2, 9 and 23 were assigned to more than one communities. All these nodes
lie on the brink of two communities, see Table 2.

The result of the case c = 3 coincided with the result of label propagation
method [25]. The optimum of the extended modularity in case c = 4 gave the
same result as the walktrap method [23]. The case c = 4 gave the highest mod-
ularity (0.4198), above c = 4 the value of modularity started decreasing. See the
modularity values in Table 3 .

5.2 “Les Miserables” graph

In the “Les Miserables” graph (see Figure 3) nodes represent characters in Victor
Hugo’s novel “Les Miserables” as indicated by the labels and edges connect any
pair of characters that appear in the same chapter of the book [14].

The Table 5 is the summarizing table of the modularity values. In case c = 4, 5
and 8 the optimal extended modularity determines strict partitions again, but in the
case c = 11, 12 we got some overlaps. In Table 4 the reader can see the non-binary
membership vectors when the number of communities is 12.

5.3 Political books graph

The nodes in political books graph represent books about US politics sold by the
online bookseller Amazon.com. Edges represent frequent co-purchasing of books by
the same buyers, as indicated by the “customers who bought this book also bought
these other books” feature on Amazon.

Nodes have been given values `, n, or c to indicate whether they are liberal, neu-
tral, or conservative. These alignments were assigned separately by Mark Newman
based on a reading of the descriptions and reviews of the books posted on Amazon.

The optimum value of extended modularity in case c = 3, 4 and 5 gave strict
partitions. In case c = 4 the optimal extended modularity gave almost the same
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Node Membership vector

0 (inst) (1.000000,0.000000,0.000000,0.000000,0.000000)
2 (0.985774,0.000000,0.000000,0.000000,0.014226)
9 (0.000000,0.014226,0.000000,0.000000,0.985774)
23 (0.000000,0.117156,0.882844,0.000000,0.000000)
32 (0.000000,1.000000,0.000000,0.000000,0.000000)
33 (adm) (0.000000,1.000000,0.000000,0.000000,0.000000)

Table 2: Zachary graph – membership vectors

Method Modularity
No. of
comm.

Edge betweenness 0.4013 5
Leading eigenvector 0.3727 3
Newman greedy 0.3807 3
Label propagation 0.4020 3
Spinglass 0.4063 6
Walktrap 0.4198 4

CPM (k = 3) 0.2438 3
CPM (k = 4) 0.2557 3
N++ 0.1947 12

Sequential greedy 0.3599 2

Optimum of the 0.4086 6
extended modularity 0.4159 5

0.4198 4
0.4020 3
0.3718 2

Table 3: Modularity values – Zachary graph
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Node Membership vector

Valjean (0.00, 0.00, 0.00, 0.00, 0.00, 0.31, 0.69, 0.00, 0.00, 0.00, 0.00, 0.00)
Marguerite (0.06, 0.00, 0.21, 0.00, 0.00, 0.73, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
Isabeau (0.00, 0.00, 0.00, 0.00, 0.00, 0.31, 0.00, 0.00, 0.00, 0.00, 0.69, 0.00)
Gervais (0.00, 0.00, 0.00, 0.73, 0.00, 0.27, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
Tholomyes (0.00, 0.00, 0.00, 0.00, 0.00, 0.25, 0.00, 0.00, 0.00, 0.75, 0.00, 0.00)
Scaufflaire (0.00, 0.00, 0.00, 0.00, 0.00, 0.25, 0.00, 0.00, 0.00, 0.75, 0.00, 0.00)
Woman1 (0.00, 0.00, 0.00, 0.78, 0.00, 0.22, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
Boulatruelle (0.00, 0.32, 0.00, 0.00, 0.00, 0.00, 0.68, 0.00, 0.00, 0.00, 0.00, 0.00)
Woman2 (0.00, 0.56, 0.00, 0.00, 0.00, 0.17, 0.00, 0.00, 0.00, 0.00, 0.00, 0.27)
MotherPlutarch (0.00, 0.32, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.68, 0.00)
Toussaint (0.00, 0.56, 0.00, 0.00, 0.00, 0.17, 0.00, 0.00, 0.00, 0.00, 0.00, 0.27)

Table 4: “Les Miserables” graph - Membership vectors of some nodes (c = 12)

Method Modularity
No. of
comm.

Edge betweenness 0.5381 11
Leading eigenvector 0.5116 4
Newman greedy 0.5006 5
Label propagation 0.5222 5
Spinglass 0.3809 12
Walktrap 0.5214 8

CPM (k = 6) 0.4041 4
CPM (k = 7) 0.4359 5
N++ 0.2946 16

Sequential greedy 0.4705 7
0.4805 5
0.4658 4

Optimum of the 0.4489* 12
extended modularity 0.5402* 11

0.5453 8
0.5562 5
0.5218 4

Table 5: Modularity values – “Les Miserables” graph, *indicates the non-strict (fuzzy)
partitions

Method Modularity
No. of
comm

Edge betweenness 0.5168 5
Leading eigenvector 0.4516 4
Greedy 0.5020 4
Label propagation 0.4946 3
Walktrap 0.5253 4

CPM (k = 3) 0.4695 4
N++ 0.1656 34

Sequential greedy 0.4243 5
0.4578 4
0.3883 3

The optimum of the 0.5217 5
extended modularity 0.5254 4

0.5269 3

Table 6: Modularity values – Graph of political books [15]
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Figure 3: “Les Miserables” graph – Community structure with highest modularity
(c = 5)

Community Edge Eigen- Walktrap Label Newman CPM
or cluster betweenness vector propagation greedy

liberal/neutral/conservative books

0 3/2/2 0/1/2 5/4/3 4/4/2 5/4/3 1/2/0
1 0/3/42 0/2/35 0/2/39 0/7/46 0/6/43 0/4/44
2 39/2/1 43/7/3 38/2/1 39/2/0 38/2/1 43/4/6
3 0/4/4 0/3/9 0/5/6 – 0/1/2 0/4/4
4 1/2/0 – – – – –

Table 7: Graph of political books – distribution of the same type books among
communities
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Figure 4: Political books graph – The communities in case c = 4, the modularity is
0.5254. The intensity shows the community, the shape indicates the original type
of the book (square - liberal, circle - neutral, star - conservative).
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division as the walktrap method, just one node was classified to another group, see
Table 6.

The Table 7 shows the distribution of the book types among communities.
It clearly shows, that every methods found two big and few (1, 2 or 3) small
communities. One of the big communities contains mainly liberal books, the other
contains conservative. The examination of the community/cluster 1 shows it mainly
contains conservative book and few neutral, but none of the methods classified
any liberal book to this class. As a contrast the community/cluster 2 mainly
contains liberal books and some neutral, but almost every methods (except the
label propagation) classified some conservative book in this community.

The rest of the clusters/communities are small and there are few which con-
tains both liberal and conservative. The majority contains liberal and neutral or
conservative and neutral books as we expect from a clustering method.

6 Conclusion

A new community detection method was proposed based on the definition of fuzzy
partition and extended modularity. It was showed that the optimum of the ex-
tended modularity can determine overlapping and can give similar or sometimes
better results, than earlier heuristics. However, it takes considerable more time to
determine the optimum of the extended modularity, because it needs a solution of
a quadratic optimization problem.

In solving QP problems it is important to find a good initial point. Thus we
tried out the outputs of other methods proposed in [12, 22, 18, 19, 25] (see in Table
3, 5) as an initial point. Then the running time was reduced, but it is still too long.
So the proposed method can be used only for small social networks.

The other proposed SG method provides good results measured in modularity,
and its running time is acceptable as well (see Table 3, 5 and 6). In some case
it gives higher modularity than other, more sophisticated methods (e.g. leading
eigenvector method in Table 6). However it is strictly a clustering method, it
cannot provide overlap.

There are still several ways for future work. We can define other similarity
measures, or extend the modularity in some other reasonable way.

Other idea, to redefine the Equation 2, which is a constraint about the sum of
the membership values of node i (∀1 ≤ i ≤ n). Instead of restrict this sum to be
equal to 1, the sum can depend on the centrality of node i, so we can define it in
the following way

c∑
j=1

uij = g(ki), (8)

where g(.) is an increasing function of the degree. This change allows for central
nodes to have higher membership values. It is a rational change, because nodes
with many connections usually belongs to more than one community.
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We have already tested some cases on the Zachary graph. We increased the
upper bound constraints of the sum of the membership values of the 3 main node:
the 0, 32 and the 33. We can obtain from our observation that the increase of
the upper bounds gives overlaps and maybe gives interesting results, thus it is a
possible way for future work.
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